Sulfonylureas: historic to contemporary role in the management of type 2 diabetes

by D. R. Webb, M. Davies, K. Khunti, United Kingdom

Sulfonylureas continue to play an important role in the management of type 2 diabetes, despite the introduction of new agents with superior tolerability and fewer side effects. This review provides a historical perspective on sulfonylurea use and describes how the evolving evidence base continues to influence decision making, consensus treatment advice, and the general positioning of this class. Third-generation drugs (gliclazide modified release [MR] and glimepiride) remain a cost-effective glucose-lowering option with similar efficacy to dipeptidyl peptidase-4 (DPP-4)/sodium-glucose cotransporter-2 (SGLT-2) inhibitors and thiazolidinediones as add-on therapy to metformin. Mean reductions in HbA1c% with sulfonylureas are sufficient to impact microvascular complications after 5 to 10 years treatment and probably cardiovascular disease in the longer term. However, therapeutic choice should consider higher rates of hypoglycemia, especially in renal disease, and weight gain with sulfonylureas. These agents are effective in some forms of monogenetic diabetes but as insulin secretagogues do not improve overall β-cell function. In summary, glucose-lowering potency and cost continue to make sulfonylureas an important treatment choice across the global health economy. Newer-generation agents also mitigate hypoglycemia risk and weight gain, but lack of evidence of cardiovascular mortality benefits in patients with type 2 diabetes is likely to be an increasingly important factor in treatment algorithms.

Medicographia. 2018;40:129-135

Introduction

Sulfonylureas are orally administered organosulfur-containing sulfonamide antibiotic derivatives widely used in the management of type 2 diabetes.\(^1\)\(^2\) They are most often employed as second-line glucose-lowering therapies, with an estimated 30% to 45% of patients, or 15 million people worldwide, using them as part of their diabetes treatment.\(^3\)\(^4\) In England, over 8 million prescriptions for sulfonylureas have been issued every year since 2009.\(^5\) These agents have remained in the armamentarium of most diabetes clinics for over 50 years now, despite unprecedented scrutiny and speculation over their side effects.\(^6\)

This chronological review examines the controversies surrounding sulfonylureas and discusses how this group of drugs have been able to evade redundancy at a time when numerous newer and arguably better glucose-lowering drugs are being marketed. It will describe sulfonylurea research directly influencing clinical practice and contextualize the place of these drugs in current and future treatment algorithms. Modification of the hydrocarbon backbone of the basic organosulfur structure...
changes its pharmacodynamic and pharmacokinetic properties, theoretically enabling the development of new and improved “generations” of sulfonylureas (see Figure 1 for structures of first-, second-, and third-generation sulfonylureas). These aim to improve clinical performance, minimize hypoglycemia, and allay concerns over cardiovascular safety. Whether contemporary sulfonylureas have met these requirements is also considered, particularly in respect to increasingly abundant cardiovascular outcome data for other glucose-lowering drugs.

The safety of certain sulfonylureas was first questioned in 1970 after publication of the University Group Diabetes Program (UGDP) results. This controversial trial reported that tolbutamide, a first-generation sulfonylurea, may be associated with an increased risk of cardiovascular death and prompted the US Food and Drug Administration to withdraw the drug and impose a “black box” warning on all sulfonylureas. Despite subsequent widespread criticism of its methodology, publication of the UGDP results dramatically affected prescribing patterns in the US and triggered a tranche of research into the effects of sulfonylureas on the cardiovascular system. They are now known to stimulate insulin release by binding to sulfonylurea receptor 1 (SUR1) membrane receptors and inhibiting adenosine triphosphate (ATP)-sensitive potassium (K⁺) influx channels on the pancreatic β-cell. It is proposed that transient ischemia-induced opening of myocardial and vascular smooth muscle ATP-sensitive K⁺ channels has a protective effect through reduced cardiac afterload and peripheral vasodilation, a phenomenon referred to as ischemic preconditioning. Nonselective binding and closure of ATP-sensitive K⁺ channels are therefore potentially deleterious, and sulfonylurea effects on preconditioning have been proposed as an explanation for the results of UGDP. Sulfonylureas appear to have a range of affinities for different sulfonylurea-receptor isoforms, resulting in significant variation in their ability to interfere with ATP-sensitive K⁺ channel activity. Interestingly, tolbutamide, like gliclazide, has a low affinity for sulfonylurea receptor 2A (SUR2A) on cardiac myocytes, whereas other sulfonylureas are less β-cell specific and therefore potentially more cardiotoxic. Further evidence that this class of drugs have differing binding affinities comes from animal work. In rodent models, nicorandil-induced ischemic preconditioning is abolished by glibenclamide but not by gliclazide. In summary, it would appear first- and second-generation sulfonylureas have less-selective binding properties, which may have adverse effects on cardiac tissue. Despite UGDP, the class survived this highly uncertain time and progressed into the era of the glucose-lowering “mega” trials.

Reassurance from the large cardiovascular outcome trials (1993-present day)

Current glucose-lowering targets are based on evidence gathered from landmark randomized trials comparing intensive management with routine care. The first to demonstrate a clear link between intensity of glucose control and the development of early vascular complications was the DCCT (Diabetes Control and Complications Trial). In this multicenter study in people with type 1 diabetes, a glycated hemoglobin (HbA₁c) difference of approximately 2% sustained over a me-
SULFONYLUREAS AND THE EVOLVING LANDSCAPE OF TYPE 2 DIABETES

Staying power? Glycemic control efficacy, hypoglycemia, and weight gain (1970 – present day)

Type 2 diabetes mellitus is caused by pancreatic β-cell dysfunction and target-cell resistance to the effects of insulin. Because these primary cellular defects typically worsen over time, multiple interventions are usually required to minimize progressive hyperglycemia once a diagnosis is made. The timing and extent of treatment intensification is largely determined by the ensuing metabolic compromise and requires careful consideration of the relative merits of available glucose-lowering pharmacotherapy. Initial treatment is usually with the biguanide metformin in conjunction with lifestyle and dietary changes. Current guidance from the European Association for the Study of Diabetes/American Diabetes Association (EASD/ADA) and the American College of Endocrinology/American Association of Clinical Endocrinologists (ACE/AACE) recommends individualized thresholds for the sequential addition and titration of second- and third-line glucose-lowering therapies when mutually agreed targets are not achieved with metformin alone.10–23 These include agents within the following groups: sulfonylureas, thiazolidinedione, dipeptidyl peptidase-4 (DPP-4) inhibitor, glucagon-like peptide-1 receptor agonist (GLP-1 RA), sodium-glucose cotransporter-2 (SGLT-2) inhibitor, and basal insulin. Unfortunately, despite the need for additional treatment, there is often a significant delay in sequential intensification, possibly because of anticipated unacceptable side effects or inconvenience of proposed medication choices.24 Sulfonylureas have been part of treatment algorithms for type 2 diabetes since their introduction in 1956, partly because in the short-term they reliably reduce plasma glucose.

By stimulating remaining endogenous insulin secretion, sulfonylureas improve glycemic control when used as monotherapy, in combination therapy, or with insulin. In a systematic review of 31 double-blind randomized controlled trials (including 3956 patients) with median duration of 16 weeks (range 3 weeks to 3 years), sulfonylurea monotherapy lowered HbA1c concentration by 1.5% compared with placebo, by 1.62% compared with other oral glucose-lowering therapy (metformin or troglitazone), and by 0.46% compared with insulin.24 Similar reductions in HbA1c were found in a systematic review of 27 randomized controlled trials (involving 11 198 patients in total and each trial lasting at least 3 months) comparing different drug classes, including sulfonylureas, thiazolidinediones, GLP-1 RAs, and DPP-4 inhibitors, added

Selected abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCORD</td>
<td>Action to Control CardioVascular Risk in type 2 Diabetes</td>
</tr>
<tr>
<td>ADOPT</td>
<td>A Diabetes Outcome Progression Trial</td>
</tr>
<tr>
<td>ADVANCE</td>
<td>Action in Diabetes and Vascular disease: PreterAx and DiamicroN MR controlled Examination</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CANVAS</td>
<td>CANAgliflozin cardioVascular Assessment Study</td>
</tr>
<tr>
<td>CAROLINA</td>
<td>CARdiovascular Outcome study of LINAgliptin versus glimepiride in patients with type 2 diabetes</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>DCCT</td>
<td>Diabetes Control and Complications Trial</td>
</tr>
<tr>
<td>DPP-4</td>
<td>dipeptidyl peptidase-4</td>
</tr>
<tr>
<td>EMPA-REG OUTCOME</td>
<td>(Empagliflozin) Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients</td>
</tr>
<tr>
<td>GLP-1 RA</td>
<td>glucagon-like peptide-1 receptor agonist</td>
</tr>
<tr>
<td>Hba1c</td>
<td>glycated hemoglobin</td>
</tr>
<tr>
<td>LEADER</td>
<td>Liragludette Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results</td>
</tr>
<tr>
<td>MACE</td>
<td>major adverse cardiovascular events</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>SGLT-2</td>
<td>sodium-glucose cotransporter-2</td>
</tr>
<tr>
<td>SUSTAIN-6</td>
<td>Trial to Evaluate Cardiovascular Outcomes with Semaglutide in Subjects with Type 2 Diabetes</td>
</tr>
<tr>
<td>TOSCA.IT</td>
<td>Thiazolidinediones Or Sulfonylureas and Cardiovascular Accidents Intervention Trial</td>
</tr>
<tr>
<td>UGDP</td>
<td>University Group Diabetes Program</td>
</tr>
<tr>
<td>UKPDS</td>
<td>United Kingdom Prospective Diabetes Study</td>
</tr>
</tbody>
</table>

Median of 6.5 years reduced the risk of retinopathy, neuropathy, and nephropathy by over 50%.13 Whether these important findings could be replicated within the much larger population of people with type 2 diabetes remained uncertain until publication of the UKPDS (United Kingdom Prospective Diabetes Study) in 1998.14 UKPDS confirmed the benefits of sulfonylurea (mostly glibenclamide and chlorpropamide) and insulin-based treatment intensification, as compared with conventional treatment, on similar microvascular outcomes as DCCT but this time in people with newly diagnosed type 2 diabetes. A small substudy of UKPDS did show that the addition of metformin to a sulfonylurea was associated with an increased risk of all-cause mortality compared with sulfonylurea monotherapy (UKPDS34).15 In posttrial observational follow-up of both UKPDS and DCCT, microvascular disease benefits were maintained and cardiovascular and overall mortality benefits emerged.16,17 Overall, UKPDS did not confirm the findings of UGDP and in fact suggested intensive treatment with sulfonylureas was both safe and effective. Importantly, it should be noted that as a range of drugs and treatment strategies were used in the treatment arms of this glucose-lowering study, it is impossible to make firm conclusions about the effect of individual therapies. In the glucose-lowering arm of the ADVANCE study (Action in Diabetes and Vascular disease: PreterAx and DiamicroN MR controlled examination) over 10 000 patients with type 2 diabetes for at least 10 years and at least one cardiovascular risk factor were randomized to either intensive (HbA1c <6.5%) or standard control.18 ADVANCE confirmed the findings of UKPDS in terms of microvascular benefits and—because all participants in the intensive arm of the study initially received glitazide MR—further consolidated confidence in the use of “modern” sulfonylureas.19
to maximally titrated or tolerated metformin in patients with inadequate glycemic response. For all drugs, and for sulfonylurea specifically, the weighted mean difference in HbA1c concentration from baseline was 0.79% (95% confidence interval [CI], −0.90 to −0.68; P < 0.05) and 0.79% (−1.15 to −0.43; P < 0.05), respectively.29 In summary, trial data continues to demonstrate that contemporary sulfonylureas are potent glucose-lowering therapies with equal if not superior clinical efficacy to many emergent newer drugs.

The most frequently encountered and clinically important side effects of sulfonylureas are hypoglycemia and weight gain. These by-products of glucose-independent insulin secretion have always been an area of major concern for clinicians and patients alike but notably are not features of new diabetes treatments such as incretin (DPP-4 and GLP-1 RA)-based therapies and SGLT-2 inhibitors. Hypoglycemia is possibly the most feared adverse effect of diabetes treatment and contributes significantly to patient distress and the therapeutic inertia discussed earlier.23 The importance of low blood glucose has taken on new meaning over the last 10 years as it has become increasingly linked to cardiovascular mortality and some of the deleterious proinflammatory responses more commonly associated with hyperglycemia.30 Both high and low HbA1c are linked to all-cause mortality and cardiovascular disease, and the results of meta-analyses suggest that hypoglycemia nullifies benefits accrued by the effort of intensive glucose lowering.27,28 The ACCORD trial (Action to Control Cardiovascular Risk in type 2 diabetes) demonstrated increased cardiovascular death with an intense glucose-lowering regimen targeting an HbA1c of less than 6.0%.31 Unsurprisingly, severe hypoglycemic episodes occurred more frequently in the intensively managed group and were identified as a risk factor for mortality in secondary analyses of the trial. Like UKPDS and ADVANCE, it is not possible to tease out the role of individual therapies in the complex glucose-lowering algorithms of ACCORD, or even to conclude with confidence that hypoglycemia is the reason for its surprising outcome. However, since its publication, drugs with the capacity to cause hypoglycemia have been on the decline. For example, there has been a significant reduction in sulfonylurea use in the United States, United Kingdom, and other European countries over the last 10 years, as clinicians and patients opt for therapies with fewer propensities for hypoglycemia or weight gain.32–35 The elderly and patients with poor renal function carry a higher risk of hypoglycemia, so sulfonylurea use in these subgroups has become a particular concern. Although all sulfonylureas can cause hypoglycemia, it appears that some may carry a higher risk than others.36 Differences in chemical structure and pharmacodynamic properties between sulfonylureas probably explain the variation in hypoglycemia risk. Several conventional and network meta-analyses of trial data has shown differential effects of sulfonylureas, with glibenclamide generally being associated with a higher risk of hypoglycemia compared with gliclazide, glimepiride, and glipizide.34–36

Cardiovascular outcome trials and direction of future guidance (2008 – present)

The last decade has seen an unprecedented rise in the number of new pharmacotherapies for type 2 diabetes.27 In 2008, in response to concerns about the cardiovascular safety of diabetes drugs, the US Food and Drug Administration issued a directive that clinical trials of new agents should include outcome data to demonstrate they are not associated with increased cardiovascular risk.38 Unlike sulfonylureas, which predate these requirements, many of these drugs have been or are being tested in this way as a prerequisite to gaining regulatory approval. This level of scrutiny provides additional reassurance that a new therapy is not going to increase cardiovascular risk, or if the study design allows for enough power, it can also sometimes demonstrate cardiovascular benefit. This has recently been shown to dramatic effect in the EMPA-REG OUTCOME (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients), CANVAS (Canagliflozin cardioVascular Assessment Study), LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome results), and SUSTAIN-6 (Trial to Evaluate Cardiovascular Outcomes with Semaglutide in Subjects with Type 2 Diabetes) phase 3 cardiovascular outcome trials, where highly relevant cardiovascular mortality benefits were demonstrated for the SGLT-2 inhibitors empagliflozin and canagliflozin and the GLP-1 RAs liraglutide and semaglutide in people at high risk of or with preexisting cardiovascular disease.39–42 Such results are extremely powerful, providing clinicians with long–sought-after knowledge that the glucose-lowering therapies they are advising for their patients are firstly safe and secondly may have a beneficial effect on cardiovascular disease.

Since completion of these trials, other GLP-1 receptor agonists have been tested in cardiovascular outcome trials, adding further to the encouraging evidence base for this new class.33,44 There is also safety data available for the DPP-4 inhibitors, with three trials indicating that sitagliptin, saxagliptin and alogliptin are noninferior to placebo in major adverse cardiovascular events (MACE)-defined primary outcome trials.45–47

This increasing level of confidence cannot currently be extended to sulfonylureas, where, more than 40 years after the publication of UGDP, the association between incident cardiovascular disease and sulfonylurea use remains far from clear. The availability of high-quality outcome trial evidence assessing named sulfonylureas is relatively limited and is probably going to be increasingly confined to noninferiority comparator studies with newer agents.

The TOSCA.IT trial (Thiazolidinediones Or Sulfonlureas and Cardiovascular Accidents.Intervention Trial) compared the thiazolidinedione pioglitazone with a randomly allocated sulfonylurea (gliclazide [50%], gliclazide [48%], or glibenclamide [2%]) as second-line add-on therapy in 3000 people with
type 2 diabetes. The number of primary outcome cardiovascular events after 2.1 years of follow-up was almost identical in both arms of the study, although there were more hypoglycemic episodes associated with sulfonylurea use. The CAROLINA study (CARDiovascular Outcome study of LINAglipatin versus glimepiride in patients with type 2 diabetes) is investigating the impact of the DPP-4 inhibitor linaglizin on cardiovascular outcomes compared with glimepiride and is due to report its findings in late 2018.

Meta-analyses of sulfonylurea clinical trial data have tended to show no consistent association with MACE outcomes, while acknowledging the general heterogeneity of available data. In one study, the MACE risk estimate was not increased (odds ratio [OR], 1.08; 95% CI, 0.86-1.36; P=0.52), and the authors suggested that longer-term cardiovascular outcome studies were necessary to fully assess cardiovascular safety of sulfonylureas. Another used a network analysis to indicate that the risk of all-cause and cardiovascular mortality was lower with gliptazide and glimepiride than with glibenclamide (all-cause mortality for glipizide: relative risk, 0.65; 95% CI, 0.53-0.79). Of all the sulfonylurea trials included, only glipizide was associated with an increased risk of all-cause mortality (OR, 1.68; 95% CI, 1.06-2.66) and cardiovascular mortality (OR, 2.1; 95% CI, 1.09-3.72), whereas neither gli- pazide nor glimepiride were associated with significantly increased all-cause mortality (OR, 0.92; 95% CI, 0.49-1.72) or cardiovascular mortality (OR, 1.94; 95% CI, 0.86-4.39).

Evidence from meta-analyses of studies that were limited to new-generation sulfonylureas indicate no consistent association, either increased or decreased, between all-cause mortality or cardiovascular mortality and sulfonylurea use in people with type 2 diabetes. Observational data appears similarly uncertain. In a French registry study of patient outcomes after myocardial infarction, mortality was significantly lower in people with diabetes previously treated with sulfonylureas compared with those on other oral medication, insulin, or no medication. Arrhythmia and ischemic complications were also less common in the glimepiride group and glimepiride groups. Conversely, other researchers using the Swedish National Diabetes Register observed that second-line treatment with DPP-4 inhibitors and thiazolidinediones was associated with reduced mortality risk compared with sulfonylureas. Others have found both increased and decreased risk of cardiovascular events and death associated with sulfonylureas. Future management guidance is likely to attach increasing importance to the ability of glucose-lowering therapies to address cardiovascular comorbidities associated with type 2 diabetes. Medications that have evidence of efficacy in high-risk cases—eg, obesity, existing heart disease, and microalbuminuria—are likely to be promoted in this role. The lack of this in the case of sulfonylureas is already beginning to affect some prescribing behaviors and may have major implications for these drugs.

Glycemic control durability (1990s – present)
In the late 1990s, speculation mounted that chronic use of first- and second-generation sulfonylureas may expedite β-cell failure and hasten the need for insulin therapy in type 2 diabetes. Sulfonylurea-mediated K+ ATP channel closure resulting in unregulated cellular hyperexcitation was proposed as a trigger to "secondary loss" of insulin secretion or even β-cell death. Therapy with sulfonylureas is associated with a gradual loss of glucose control and a greater rate of medication "failure" than either metformin or thiazolidinediones. Findings from the ADAPT trial (A Diabetes Outcome Progression Trial) showed that sulfonylurea monotherapy is sustainable for approximately 2.75 years before additional therapy is needed, although at this stage, there appears to be little difference in β-cell function between metformin, rosiglitazone, and glibenclamide. More recently, mouse model work suggests that K+ ATP channel suppression caused by sulfonylurea administration probably results in a transitory reversible impairment of β-cell secretory capacity with no evidence of accelerated apoptosis. How or indeed whether these observations relate to sulfonyl-urea actions in humans remains uncertain, but they have led to suggestions that sustained or tonic β-cell stimulation may be best avoided. Newer compounds that act in a glucose-dependent fashion to promote phased insulin release may have better glycemic control durability. In recent clinical trials, DPP-4 inhibitors have been associated with improved β-cell function and an increase in time to insulin initiation. There is also some evidence from real-world studies that treatment is maintained longer with dual therapy consisting of metformin and a DPP-4 inhibitor than with metformin and a sulfonylurea. Head-to-head randomized comparisons over several years would be needed to determine whether newer drugs are more durable than sulfonylureas in clinical practice.

K+ channel closure: a unique action put to good use in monogenic diabetes (2000 – present)
Uncoupling of β-cell-stimulus – insulin-secretion coupling is of particular use if intracellular ATP production is impaired or there is a defect in K+ ATP channel closure. Such abnormalities are seen in genetic mutations of the glycolytic pathway or the SUR1 membrane receptor, as occurs in some forms of neonatal and monogenic diabetes. Sulfonylureas have proven highly successful as a treatment modality for these specific and relatively rare conditions. As we enter the era of personalized medicine, it seems likely that further mutations and genetic variation in β-cell insulin release pathways will be identified. These may represent further opportunities for highly effective, targeted sulfonylurea therapy.

Conclusion
The place of sulfonylureas in the management of type 2 diabetes continues to divide opinion. Their ability to meaningfully lower plasma glucose concentration remains undisputed, and current research suggests cardiovascular safety concerns
about third-generation drugs especially are probably over-
stated. The global impact of DPP-4 and SGLT-2 inhibitors on
sulfonylurea prescribing is growing and is likely to increase
further as these classes become a more cost-effective op-
tion. Newer competitors have the advantage of lower rates of
hypoglycemia, are not associated with weight gain, and
most have undergone rigorous cardiovascular safety testing
before being approved for use. The knowledge that some of
these glucose-lowering drugs have additional probably pleio-

tropic actions that improve cardiovascular outcomes and mor-

tality in high-risk populations with type 2 diabetes is an ex-
tremely powerful incentive to prescribe over traditional and
less-certain drugs. This trend is likely to continue. However, the
actions of insulin secretagogues are tried and increasingly test-
ed, and they have certainly survived previous challenges to
their place at the top of second-line choices for glucose man-
gement. Some 80% of patients in low- and middle-income
countries continue to use these drugs. It seems inevitable that
sulfonylureas will need to demonstrate hard evidence of sur-
vival benefits in future head-to-head comparisons with other
drugs if they are to retain their mass appeal once the afford-
ability of newer agents is no longer an issue.

References
2:4990:431-432.
2. Sola D, Rossi L, Schianca GP, et al. Sulfonylureas and their use in clinical prac-

type 2 diabetes mellitus initiating second-line therapy after metformin mono-
therapy: retrospective data for 10,256 individuals from the United Kingdom and
5. Prescribing and Medicines Team, NHS Digital. Prescribing for Diabetes in Eng-
land – 2005/6 to 2015/16. Available at: https://files.digital.nhs.uk/publication
6. DeFronzo RA. From the triumvirate to the octet model: a new paradigm for the

7. Colaguri S, Matthews D, Letter LA, Chian SP, Sest S, Gare M. The place of
glucose clamp in the evolving type 2 diabetes landscape: a comparison with other
2018;143:1-14.
8. Abdelmonem AS, Hassenbank SE, Seubert JM, Brooks DR, Light PE, Simpson
Sh. Variations in tissue selectivity amongst insulin secretagogues: a system-
9. Goldner MG, Kratzer GL, Proul TE. Effects of hypoglycemic agents on vas-
cular complications in patients with adult-onset diabetes. 3. Clinical implications
10. Burke MA, Mutharasan RK, Ardehal H. The sulfonylurea receptor, an atypical
11. Mean J, Czernik SJ, Schmidt WE, Mogge A, Nauck MA. Is impairment of is-

oehaemic preconditioning by sulfonylureas drugs clinically important? Heart.
2004;90(9):9-12.
12. Maddock HL, Siedlecka SM, Yelon DM. Myocardial protection from either is-

oehaemic preconditioning or ischemia is not blocked by gliclazide. Cardiovasc
13. Diabetes Control and Complications Trial Research Group; Nathan DM, Gerend
S, Lachin J, et al. The effect of intensive treatment of diabetes on the develop-
ment and progression of long-term complications in insulin-dependent di-
14. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-
glucose control with metformin on complications in overweight patients with
15. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose con-

trol with sulphonylureas or insulin compared with conventional treatment and
16. Nathan DM; DCCT/EDIC Research Group. The diabetes control and compli-
cations trial/epidemiology of diabetes interventions and complications study
17. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up
1577-1589.
18. The ADVANCE Collaborative Group. Intensive blood glucose control and vas-
2560-2572.
pressure lowering and intensive glucose control on macrovascular and mi-

crovascular outcomes in patients with type 2 diabetes: new results from the

type 2 diabetes, 2015: a patient-centered approach. Update to a position state-
ment of the American Diabetes Association and the European Associa-
21. Fox CS, Golden SH, Anderson C, et al. Update on prevention of cardiovascu-
lar disease in adults with type 2 diabetes mellitus in light of recent evidence:
a scientific statement from the American Heart Association and the American
American Association of Clinical Endocrinologists and American College of
Endocrinology on the comprehensive type 2 diabetes management algorithm—
23. Kuntli K, Wolden ML, Thronsted BL, Andersen M, Davies MJ. Clinical inerta
in people with type 2 diabetes: a retrospective cohort study of more than
sulfonylurea on HbA1C in diabetes: a systematic review and meta-analysis. Dia-
25. Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic

drugs added to metformin therapy on glycemic control, weight gain, and hypo-
27. Selvin E, Steffes MW, Zhu H, et al. Glycated hemoglobin, diabetes, and cardio-
28. Rana OA, Byrne CD, Greaves K. Intensive glucose control and hypoglycemia:
29. ACCORD Study Group, Cushman WC, Evans GW, et al. Effects of intensive

1575-1585.
30. Sharma M, Nazareth I, Petersen I. Trends in incidence, prevalence and pres-
scribing in type 2 diabetes mellitus between 2000 and 2013 in primary care:
31. Desai NR, Shrank WH, Fischer MA, et al. Patterns of medication initiation in

32. Raitanino C, Arconaci V, Ferriaco C, et al. Trends in the prescription of anti-
diabetic medications from 2009 to 2012 in a general practice of southern Italy:
adverse events associated with glucose-lowering drugs in patients with type 2
34. Gangi AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM. A system-

atic review and meta-analysis of hypoglycemia and cardiovascular events: a
comparison of glyburide with other secretagogues and with insulin. Diabetes
tyoe 2 diabetes inadequately controlled with metformin monotherapy: a sys-

tematic review and mixed-treatment comparison meta-analysis. Open Med.
36. Andersen SE, Christensen M. Hypoglycemia when adding sulfonylurea to

60. Inoue SE, Tuncali K, Qu Y, et al. Progression to insulin therapy among patients with type 2 diabetes treated with sitagliptin or sulfonylureas plus metformin dual therapy. Diabetes Obes Metab. 2015;17(10):956-964.

Keywords: contemporary; historical overview; sulfonylurea; type 2 diabetes